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We present a numerical, computational, and physical analysis of particle-vortex collisions in thermal super-
fluids. Our method allows fully self-consistent, dynamic computation of particle-vortex collisions within the
vortex dynamical formalism. The algorithm is described in detail and is shown to be both accurate and
efficient. The method is applied to the collision of a solid particle with a straight vortex at finite temperature.

It predicts that the smallest velocity that the approaching particle must have in order to escape the vortex after
being captured by it increases as the temperature approaches the superfluid transition temperature. A compara-
tive study of particle-vortex collisions at various temperatures reveals the contributions of viscous damping,
inertial, and boundary-induced effects on the dynamics of the system, as well as different particle-vortex
interaction behaviors. The findings corroborate the possibility of direct measurement of the normal fluid
velocity in thermal superfluids via appropriately designed particle image velocimetry experiments.

DOLI: 10.1103/PhysRevB.77.014527

I. INTRODUCTION

Thermal superfluid hydrodynamics!'~> poses many chal-
lenging and intriguing physics problems. From the theoreti-
cal point of view, fundamental difficulties arise from the
need of an adequate mathematical treatment of the interac-
tion of two nonlinear, three-dimensional mechanical fields
representing the normal-fluid and superfluid components. In
general, thermal superfluids are in a turbulent state and their
mathematical study is very demanding; due to the complex-
ity of turbulence, numerical computations are only possible
for small Reynolds numbers.*% Therefore experimental evi-
dence is expected to play a crucial role in understanding
superfluid hydrodynamics. However, until recently, little ex-
perimental information has been made available of normal-
fluid and superfluid flow patterns, let alone of simultaneous
direct measurement of superfluid and normal-fluid velocities
and spectra.

Recently, a number of experiments have been
performed”:® that tried to address this data shortage. The idea
behind these experiments is to release micron-sized solid
particles in the flow, which can be imaged with a laser to
determine their velocity or patterns. However, this technique
has created the problem of interpreting the images of par-
ticles in terms of flow velocities or vorticity. This problem
has motivated theoretical efforts to understand the motion of
particles in superfluids. A by-product of the latter investiga-
tion is a better understanding of the”® experiments, and the
design of new, more informative experiments. Initially, Poole
et al.’ formulated a mathematical model of multiphase ther-
mal superfluids in which the particle motion does not affect
the flow of either of the fluids. The model assumes that the
particle diameter is much smaller than the smallest scale of
flow variation in both fluids in order to describe the particle
dynamics via asymptotically valid differential equations.
This assumption is violated, however, when a particle col-
lides with a superfluid vortex, since the latter is characterized
by a nanometer-sized vortex core which is always orders of
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magnitude smaller than the particles diameter. Because of
this restriction, Kivotides e al.!” had to confine themselves
to thermal superfluids with a small density of superfluid vor-
tices and a dilute system of particles; under these restrictions
particle-vortex collisions are not important, and they were
able to show that viscous drag enforces the particles to move
with the normal-fluid velocity. We note in passing that they
found that the mutual-friction induced'® normal-fluid flow
around a superfluid vortex deflects approaching particles,
and so obstructs direct particle-vortex collisions. However,
since the latter effect was predicted by the equations of Ref.
9 that ignore the “corrections” to particle motion induced by
the accompanying self-consistent vortex deformation during
close encounters, and moreover, since Kivotides ef al.!! have
shown that in counterflow situations such close encounters
are unavoidable, it became evident that a more powerful
computational methodology had to be developed.

As a start,'? following a research approach initiated by
Ref. 13, Kivotides et al. developed a computational proce-
dure for calculating how the presence of particles affects
superfluid vortex dynamics (VD). The method of Ref. 12 has
two drawbacks: (a) it cannot treat vortex-particle collisions,
and (b) it is not fully dynamic, since the particle motion has
to be kinematically prescribed. The present contribution re-
moves these drawbacks enabling dynamical calculations of
vortex-particle collisions. It ought to be mentioned that Refs.
14 and 15 have successfully computed collisions of vortices
with particles. The latter, however, were either stationary or
moving with kinematically prescribed velocities. Self-
consistent evolutions are calculated here.

II. MATHEMATICAL PROBLEM

The most general formulation of our problem would be
the interaction between N, spinning, buoyant, finite-size, dy-
namic shaped particles and N, vortex loops under suitable
boundary conditions. In this form our problem would be
quite complex and (in principle) would be only solved ap-
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proximately with (as yet undeveloped) numerical and com-
putational methods. Indeed, whole monographs can be exclu-
sively devoted to the study of a pure particle'® or pure
vortex!” subproblems. However, if we confine ourselves to
the study of a N,=1 spinless, neutrally buoyant (i.e., the
Archimedean force exactly cancels the gravitational force on
the particle), spherical particle interacting with N, vortices in
infinite space domain, we can take advantage of the explicit
equation of motion of one particle in a system of superfluid
line vortices developed by Schwarz.! In this way, there is
also no need to specify how the particles collide, i.e.,
whether they are elastic (conserving kinetic energy during
collisions) or viscoelastic (dissipating kinetic energy to heat
during collisions). Hereafter, in accordance with the spinless
particle assumption, we consider only linear momentum dy-
namics, ignoring any angular momentum effects.

In particular, let X(/, ) denote the superfluid vortex link £
where [ is the arclength parametrization along the vortex
loops (knots) and 7 is time. The evolution equation for X(,?)
is given by

i—’f:vuvhvhvﬁ (1)

The first contribution is the superfluid velocity V* is given by
the Biot-Savart integral:

X' X (X -x)

K
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, 2)

where X' =dX/dl is the unit tangent vector (indicating the
direction of the singular superfluid vorticity) and « is the
quantum of circulation. The second contribution V? denotes
the “deformation” of free vortex dynamics due to the pres-
ence of a stationary particle at a particular location inside the
flow. Its calculation follows from the requirement that the
effect of the particle on the vortices must be such that the
combined (i.e., vortical plus particle induced) flow field on
the particle’s surface has an identically zero radial compo-
nent. It is convenient to write V? as the gradient of a scalar
field ®?, ie., VP=V®d?, This follows from a well-known
theorem of vector analysis that states that in a simply con-
nected space region, every irrotational vector field is also a
conservative vector field. Indeed, since we do not model the
superfluid with the Gross-Pitaevskii equation, our fluid do-
main is simply connected (i.e., there are no voids at the cen-
ter of the vortices). Moreover, since the superfluid is invis-
cid, the presence of the sphere does not generate a vortical
(rotational) boundary induced field V”. Thus both conditions
of the aforesaid theorem are valid for field V%, and no re-
stricting hypothesis is involved. Because of the incompress-
ibility condition, the ®” satisfies the Laplace equation:

V20l =0. 3)
V? satisfies the boundary condition:
(V*+V")-h=0, (4)

with fi denoting the unit radial vector field on the spherical
particle surface. The latter is defined as the set of points x
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satisfying the condition |[x—z|=a, with a being the radius of
the particle and z being the particle’s center.

The third contribution V¢ is the potential flow field in-
duced by the motion of a spherical particle with velocity V7.
This flow field is given by the expression!®

[

3
z)=—0.5(‘;l> VP(z)-(I—3ﬂ>, (5)

r2

Ve(x,t

where V¥(x,t|z) is the velocity of the fluid at x caused by a
sphere of radius a whose center is located at z, I is the 3
X3 unit matrix whose elements are the Kronecker symbols
8 (i,j=1,2,3), x'=x-z, and r=|x-z/.

Finally, the fourth term is the mutual friction associated
velocity V/ given by a formula derived in Ref. 19:

V= h (VS + VP4 V) 4 1, X X [V'= (V' + VP + V9]
+h X' X (X' XV, (6)

where V" is the kinematically prescribed normal fluid veloc-
ity? and h*=d¢m/[d3*+(1_d*)2]’ h**=(d*_di*_di)/[di*
+(1-d,)?] are dimensionless numbers given in terms of the
(also dimensionless) mutual friction coefficients d, and d,,.
To compute the latter coefficients, one starts from the Hall-
Vinen coefficients and following Ref. 20 calculates the trans-
verse and longitudinal drag coefficients D) and D,,. Subse-
quently, one computes D,=D,-p,k, and finally d,
=D, /(p,k), d,,=D,./(psx). It is noted that in the single-
phase superfluids literature, methods have been developed
for the computation of fully dynamical thermal superfluids
evolutions.?! However, these methods are not directly appli-
cable to multiphase thermal superfluids, since the latter re-
quire the accurate computation of the flow at the solid-
normal-fluid interface. This task could be achieved in the
future using either the “diffuse interface method” (also
known as “immersed boundary method”)?? or the “sharp in-
terface method”.??

The particle equation of motion is an equation derived by
Schwarz in Ref. 13 with the addition of a viscous damping
force. It reads:

N ra (V" ~V?) + 2mp ad 1)
m, dt =0mapm, Tpsa ot

1
+ 5P f dS(V* + V), (7)
N

where m, is the effective mass of the particle m,=m
+(2/3)mp,a®, m is the particle mass, u, is the dynamic vis-
cosity of the normal fluid, p, and p are the superfluid mass
density and total mass density, respectively, and V*(z,?) is
the vortex-induced velocity at the particle center; the last
term is a surface integral with n being the outward unit radial
vector field on the spherical particle surface. It is convenient
to write the right-hand side of Eq. (7) as f=fy+f;+fj, this
decomposes the total force f into viscous drag, fy, local, f),
and boundary force, f;,. Equation (7) takes into account the
effect of the normal-fluid on particle motion via a viscous
drag force known as Stokes force (first term on the right-
hand side). We have set V=0 throughout this investigation.
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Equation (7) is a very elementary model of a particle moving
within a thermal superfluid because it does not include many
(potentially important) physical effects. For example, the last
two terms on the right-hand side represent an exact and com-
plete treatment of the particle force only for pure superfluids.
At finite temperatures, there must be additional terms that
take into account the fact that, due to the mutual friction,
superfluid flow cannot be treated as a simple incompressible
potential flow. In addition, our system of differential equa-
tions does not take into account the effects on the motion of
superfluid vortices of particle induced normal-fluid flow. The
treatment of these and other similar effects requires a more
sophisticated numerical and computational method that
could be developed in the future. Such a method would allow
the study of refined physical effects which occur in situations
where all three components (superfluid, normal-fluid,
particle-field) exhibit strongly interacting, fluctuating behav-
ior. These situations could be important for theoretical, as
well as experimental reasons, and their study could also ben-
efit other branches of physics.

In summary, in order to understand particle-vortex inter-
actions in the framework of the present model, one has to
solve the coupled system of integrodifferential equations (1)
and (7). The solution of Eq. (1) requires the solution of the
subproblem (3) and (4). However, there is still a serious gap
in this formulation: it is expected that particles tend to col-
lide with vortices, but the physics of such encounters are not
included in Eq. (1). An equation that encompasses such a
process is the Gross-Pitaevskii (GP) equation for a Bose-
Einstein condensate that has already been used for studying a
problem similar to ours but of atomic scale.?* Although, in
principle, the GP equation could describe the interaction of
micron-sized particles with vortices in “large” (centimeter-
sized) fluid systems, in practice, the computational complex-
ity required to “bridge” the nanometer-scale phenomena at
the vortex core level with the centimeter-scale flow phenom-
ena in the bulk forbids such a computation. Therefore since
our purpose is to establish contact between theory and ex-
periments, we are forced to employ VD. In the next section,
we present a method for particle-vortex collision in the con-
text of the VD formalism. Our method is an extension to the
case of moving particles of the methodology that was devel-
oped in Ref. 14 for the case of stationary particles.

III. SOLUTION METHODS
A. Reconnection-free evolution

The coupled system of integrodifferential equations (1)
and (7) is solved using a third order accurate, low storage
Runge-Kutta (RK) method. This approach requires the dis-
cretization of the Biot-Savart integral in the fashion of Rie-
mann sums. The desingularization of the kernel is achieved
by splitting it into local and nonlocal parts. According to the
method of Schwarz,'* the local contribution is equal to the
propagation velocity of a vortex ring with radius equal to the
local radius of curvature. The nonlocal contribution is com-
puted by employing a Gaussian kernel in order to smooth the
singular superfluid vorticity. The numerical analysis of this
method has been described by Winckelmans and Leonard.?
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FIG. 1. Coordinate system and variables used in the numerical
formulas to determine the boundary-induced velocity field at posi-
tion r due to the vortex element at position R in the presence of the
sphere (Ref. 12).

The method introduces a cutoff scale in the Biot-Savart for-
mula which in all results reported here is equal to 1.2 times
the discretization length along the vortices. Without this
regularization, it is not possible to achieve stable, long-time
vortex dynamical evolutions once a particle attaches itself to
a vortex.

The method for calculating V” was discussed extensively
by Kivotides et al.'> We summarize here their method for the
sake of completeness. The vortices are discretized into a se-
quence of N small linear segments dl. In this way, the prob-
lem is reduced to the evaluation of the boundary-induced
correction corresponding to one of these segments Vﬁl,
which leads directly to the computation of V? by simple
summation over the N segments:

Vi=2 V4. (8)

By writing Vﬁ :V(I)zl and applying the incompressibility
constraint V-Vg,=0, we obtain a Laplace equation for @ﬁl:

V204 =0. )

The solution of this equation must satisfy the boundary con-
dition

(Vi + Vo5 - 1i=0, (10)

where Vy, is the Biot-Savart velocity associated to the seg-

ment dl, and 1 is the unit radial vector field on the surface of

the sphere. Due to the linearity of the Laplace equation (9),

the solution (subject to boundary conditions) can be com-
puted analytically'>!'3 and it reads

a

2\n
( ) P,lq(cos 0. (11)

kdl | asin qﬁi 1

Q)SF
47 rR S n+1

rR

In this formula (Fig. 1), dl, is the length of the projection of
segment dl on the plane that passes through the center of the
sphere, O, and is normal to the vector that connects O with
the starting point of the segment dl, R is the length of the
latter vector, and r is the length of the vector that connects O
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with the point in space at which the boundary-induced ve-
locity is being computed. In addition, ¢ is the azimuthal
angle of the spherical coordinate system attached to the
sphere, 6 is the polar angle, and Pllq(cos 0) is the associated
Legendre function of the first kind, defined by

d"P,(x)

pm =(1- 2\m/2
o (0= (1-x7) P

; (12)
where P,(x) is the Legendre polynomial of order n.

Direct differentiation of Eq. (11) gives (for the specific dlI)
the corresponding boundary induced velocity field Vﬁl. The
latter is inserted into summation (8) in order to calculate the
velocity V7 that enters Eq. (1). The details of this computa-
tion are not trivial and are discussed in great detail in Ref.
12.

With known V* and V?, the evaluation of the right-hand
side of Eq. (7) is straightforward. We have used the Gauss
quadrature method®® for the integral over the sphere.

The procedure described above assumes that, at every in-
stant during the evolution of the system, all loops belonging
to the vortex link are detached from the particle’s surface. In
fact formula (11) is valid only in such cases. This severely
restricts the usefulness of the method, since, in general, par-
ticles attach to vortices.'> Next, we develop a method that
avoids these limitations.

B. Particle-vortex collisions

Reference 12 demonstrated that when a vortex ring ap-
proaches a particle at a distance much smaller than the par-
ticle diameter, an instability develops and the ring attaches to
the sphere. This effect is similar to earlier observations!*!> of
particle-vortex collisions. Assuming that the discretization
length dl along the vortex loops is much smaller than the
particle diameter, it is plausible to attach to a particle any
vortex that approaches it closer than dl. Although, in prin-
ciple, this appears to be a simple operation, in practice the
algorithm that implements it is complex. This is because the
algorithm should satisfy the boundary conditions at arbi-
trarily set numerical accuracy, and in addition, be flexible
enough to allow the detachment of vortices from particles.
Moreover, the algorithm should allow multiple attachments-
detachments taking place simultaneously in dense vortex
links. At the same time the algorithm should not jeopardize
the stability property of the numerical scheme discussed in
the previous section. The method described here overcomes
these obstacles and allows routine calculations of particle
motion within a system of vortices.

The central idea of the method is to treat vortex-particle
collision by adding a number of points to the vortex loop that
has collided with the particle. The geometry of the added
vortex length is depicted in Fig. 2.

Proposition. The construction of Fig. 2 has the following
properties: (a) it complies with the boundary conditions and
(b) it embeds the calculation of collision events into the
“standard” VD treatment discussed in the previous section.

Proof. To prove part (a), we first put each vortex point
into one-to-one correspondence with the vortex segment that
ends at this point. Subsequently, we divide the vortex points

PHYSICAL REVIEW B 77, 014527 (2008)

FIG. 2. Typical construction of vortex geometry following the
collision of a vortex loop with a particle.

in four categories. Points belonging to the first category, la-
beled 0-points, lie outside the particle’s volume. When a vor-
tex segment defined by two 0-points approaches the particle
at a distance smaller than dl, a collision happens and vortex
points belonging to the other three categories are (instanta-
neously) added to the specific vortex loop. Vortex segments
corresponding to new points that are labeled 1-points and
2-points are placed (at equal distances dI) along the straight
lines connecting the two ends of the colliding segment with
the center of the particle (i.e., along particle diameters). The
2-points are placed exactly on the surface of the particle, and
the 1-points are placed in the interior of the particle. Finally,
new points belonging to a fourth category, labeled 3-points,
correspond to segments that form “bridges” (Fig. 2) connect-
ing 1-point segments placed along different particle-radii.
Next we show how the boundary conditions can be satisfied
by such a construction. We treat each of the four categories
of points separately. The segments corresponding to 0-points
satisfy the boundary conditions if their boundary induced
contribution to the flow is computed by means of Eq. (11) as
explained in the previous section. Segments corresponding to
1-points and 2-points do not induce any boundary-associated
velocity field, since they are placed along particle diameters
and therefore their Biot-Savart velocity field is always tan-
gential to the particle surface. Finally, consider 3-point seg-
ments. Their boundary related velocity field can be treated as
that of 0-points by replacing formula (11) with an expression

appropriate for interior vortex segments derived by
Schwarz: '
kdl, sin pwa 1 [R\"
Ph = —= ¢E (—) Pl(cos 6). (13)
47 v n+l\r

Notice that the above series converges since R is smaller
than r.

To prove part (b) (see also the discussion by Schwarz'4),
we first notice that our geometrical construction does not
destroy vortex loops. Precollision loops keep their identity,
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simply growing in size. Moreover, the dynamics of 3-points
and 1-points need not be considered at all because the part of
the vortex loop which lies inside the particle is reconstructed
at each time step from the outer vortex configuration (com-
prised of 0-points). Therefore only 0-points dynamics need
to be considered. 0-points evolve because of Biot-Savart in-
teractions with points of all categories, together with accom-
panying boundary corrections. There is a final issue: does the
construction of Fig. 2 guarantee that 2-points move tangen-
tially to the particle surface? We show that this is the case.
First, we note that 2-points evolve according to their self-
induced velocity and the influence of all other points. How-
ever, since 2-points are situated on the particle boundary, and
since we have shown in part (a) that our construction satisfies
the boundary conditions, we conclude that the velocity of
2-points induced by all other points has zero radial compo-
nent. Hence we only need to show that the self-induced ve-
locity is along the tangential direction. This is achieved by
requiring, first, that the self-induced velocity of a 2-point is
identical to the self-induced velocity of the O-point with
which it is connected (there is always one). This is a plau-
sible requirement, since, as discussed by Schwarz,'# it could
be thought that the colliding vortex configuration is always
locally normal to the particle surface, i.e., the local vortex
geometry is like that of a circular arc normal to the surface of
the particle (Fig. 5 of Ref. 14). Thus since our method for the
desingularization of the Biot-Savart kernel prescribes that a
vortex point’s self-induced velocity is that of a vortex ring
with radius equal to the local radius of curvature, the two
neighboring points (i.e., the 2-point and the 0-point that be-
long to the aforementioned circular arc) would have the same
self-induced velocity, which we choose to be determined by
the local radius of curvature at the O-point. Finally, to com-
plete our argument, we note that, by construction, the latter
velocity is along the tangent to the particle’s surface, since it
must be normal to both vortex segments associated with the
0-point neighboring the 2-point, and one of those segments is
one of the particle’s diameters.

Remark 1. A simpler alternative to our construction could
be one with no 3-points, which happens if the particle’s cen-
ter becomes a vortex point connected directly with the
0-points. Indeed, a similar construction was employed by

Schwarz'# (see his Fig. 20). This method, however, leads to
aVi(z,1)
singular particle dynamics originating in the — — term on

the right-hand side of Eq. (7), and it is not suitable for our
fully dynamical particle-vortex interaction computations.
Remark 2. During complex particle-vortex dynamics, a
situation like that of Fig. 3 could appear. In such circum-
stances, cases where (by accident) a vortex point coincides
with the particle’s center must be automatically avoided by
the algorithm (for the same reasons as those mentioned in
Remark 1). The construction of Fig. 2 satisfies this require-
ment by placing all added points outside a sphere of radius d!/
around the particle’s center. In fact, the 3-points were intro-
duced in our method in order to meet precisely this algorith-
mic contingency. Moreover, by placing the “bridge” segment
within discretization-length distance from the center (i.e., as
far as possible from the particle’s surface), we solve the
aforesaid singularity problem with the minimum possible ef-
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FIG. 3. By placing the “inner-particle” vortex points outside a
sphere of typical radius d/ around the center of the particle, special
vortex configurations like the one depicted here cause no patholo-
gies to the computational procedure.

fect on the motion of the vortex-sphere contact points.

Remark 3. It is well-known that the vortex filament model
of superfluid turbulence does not include the physics of col-
lision events. Hence the geometrical construction proposed
here belongs (at best) to a family of possible physical mod-
els. Contrary to what is stated in Ref. 14, there is an unavoid-
able arbitrariness in the way the inner-particle vortex geom-
etry dilemma is resolved. One can only plausibly expect that
for “reasonable” inner-particle extensions of a colliding loop,
the resulting evolution would qualitatively agree with a (hy-
pothetical) GP computation of the same problem which has
not been carried out as yet. At a more abstract mathematical
level, our solution could be thought of as the VD analog of
the construction of physically correct “weak™ solutions (e.g.,
via vanishing viscosity methods) of hyperbolic conservation
laws in cases where the “classical” solutions do not exist
(e.g., discontinuous wave phenomena in the compressible
Euler equations).

IV. SOLUTIONS

The method described above is applied to the problem of
particle-vortex collision at finite temperatures. There are
three postcollision outcomes: (a) the vortex remains attached
to the particle and eventually the vortex-particle compound
reaches an equilibrium state (i.e., a stationary particle with a
straight vortex attached to it) because of viscous damping,
(b) the particle breaks free from the vortex and moves to
infinity, and (c) the particle remains in the vicinity of the
vortex without being trapped. These are qualitatively very
different situations, since in the second case the particle con-
tinues its motion and is allowed, for example, to collide with
other vortices or to accelerate, extracting kinetic energy from
the normal fluid via the Stokes force. In all calculations
which we describe, a particle is placed initially at a distance
equal to its diameter away from a straight vortex. The parti-
cle’s initial velocity always aims directly at the vortex. We
do a search in a three-dimensional parameter space in order
to determine which of the three aforementioned outcomes
occurs in each case. The three parameters of the computa-
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tional search are (a) the temperature, (b) the particle diam-
eter, and (c) the magnitude of the initial particle velocity. We
consider three different temperatures, 7=1.3, 1.95, and
2.171 K. The corresponding superfluid mass fraction p,/p is
0.9550, 0.5182, and 0.0446. We use the same particle diam-
eter 2a=2X 10"* cm for all temperatures. For the 7=1.3 K
case, we also compute the motion of a particle of half size,
2a=10"* cm. Overall, the computations suggest a generic
pattern of particle-vortex collisions. As the particle ap-
proaches the vortex, the vortex develops a protruding arc as
it tries to avoid the particle. The size of the arc depends on
the speed of the approaching particle as well as temperature,
since temperature defines, via the magnitudes of the mutual
friction force coefficients in Eq. (6), the strength of the non-
linear coupling between particle and vortex. After the forma-
tion of the arc, the vortex becomes unstable and impinges
upon the particle. Depending on the geometry of the de-
formed vortex and the particle velocity, the impingement
could involve single or multiple attachment events. Notably,
for all values of particle speed investigated, the vortex al-
ways attaches to the incoming particle.

Once the vortex has attached itself to the particle, there is
a number of possible outcomes. For small collision veloci-
ties, the particle is trapped by the vortex and subsequently
jitters and crawls along it. The direction of this drifting mo-
tion depends on the vortex polarity. As the impact velocity of
the particle increases, the particle drags the two parts of the
vortex (at the expense of its kinetic energy). Equivalently,
the vortex moves along the surface of the particle until its
two ends find themselves on the “back” side of the particle’s
surface. At this point, different things can happen. For ad-
equately large particle kinetic energy upon collision, the
stretching of the two vortex parts by the particle brings them
sufficiently close to each other that a vortex instability de-
velops, and the subsequent reconnection detaches the vortex
from the particle (thus the particle breaks free and escapes
the vortex neighborhood). For smaller particle kinetic energy
values, the particle comes to a halt with the vortex attached
to it; subsequently the two parts of the attached vortex move
towards the poles of the particle and acquire (because of
mutual friction) an equilibrium straight vortex configuration.
In a third intriguing case, the particle breaks free from the
vortex, but a combination of particle pull and viscous drag
brings the particle to a halt in the neighborhood of the vor-
tex. To analyze the influence of viscous drag, we introduce
the Stokes time, given by the formula T=(12pp/ 3, where p,
is the mass density of the particle and w, is the dynamic
viscosity of the normal fluid. This time is the characteristic
time for viscosity to act on the particle in the absence of the
vortex. In the considered case, the Stokes time is so small
that even very small particle velocities induce a viscous drag
strong enough to obstruct any discernible particle motion.
Thus the final system configuration consists of a stationary
particle close to a stationary (i.e., straight) vortex.

Next, we describe the computations which corroborate the
above conclusions. The flow domain is infinite. This choice
has a major difficulty from the point of view of computa-
tional efficiency: a straight vortex in such a system is neces-
sarily infinite, and thus requires an infinite number of points
for its numerical discretization. In order to circumvent this
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difficulty, we have only computed the VD of a finite portion
of the vortex. The vortex extends symmetrically above and
below the plane that is normal to the vortex and passes
through the initial particle position; the upper end of the
vortex is prescribed to continue to its lower end. Such a
treatment assumes that the evolved system is adequately
large, so that the effects of the unaccounted vortex length on
the results are small. Since we can only judge the size of a
vortex segment by comparing it with the size of the particle,
we have chosen the length of the vortex to be equal to ten
particle diameters (i.e., /,=2.0 X 1073 cm). Note that the ratio
I,/2a becomes even greater (thus more favorable) in compu-
tations in which we investigate the effect of particle size,
which are carried out keeping the vortex length constant, and
decreasing the particle size. The vortex length [, is dis-
cretized into 128 elements of length dI=1.5625X 107> cm.
The particle’s diameter thus corresponds to approximately 12
grid points, and so vortex deformations close to the surface
of the particle are adequately resolved. Moreover, dI is suit-
able for estimating the particle-vortex proximity that enters
the computational algorithms. In computations with half par-
ticle size, [, is discretized into 256 vortex segments so that
the resolution quality remains intact. The choice of time step
takes into account three processes: (a) the particle velocity,
(b) the propagation of Kelvin waves in the system, and (c)
the viscous drag. In particular, when computing appropri-
ately dense vortex links, the particles should not propagate
by more than a fraction of the intervortex spacing within a
time step. This ensures that particle-vortex collisions are ad-
equately resolved. Usually, this concern appears when the
normal flow accelerates the particle to high velocities com-
pared to the vortex velocities. The time step ot must not
allow the fastest Kelvin wave in the system to propagate by
more than one dl in one time step, and must not exceed
0.257. The purpose of the prefactor 0.25 is to ensure that the
viscous damping process is adequately resolved. For particle
diameter 2a=2X 10~* cm, the three temperature cases T
=1.3, 1.95, and 2.171 K correspond to 7=3.1935X 107>,
3.43x 107, and 1.91 X 1073 s, respectively. In the computa-
tions reported here, typical time steps vary between ot
=3.15X%107% and 1.95X 107" s. Using the previously de-
scribed methods and the aforementioned spatial and temporal
grid sizes, there were no problems with numerical stability.
Finally, one needs to ensure that the zero radial velocity
boundary conditions on the surface of the particle are en-
forced with great accuracy throughout the computation. If
the boundary condition was enforced exactly, at all points on
the particle’s surface the total velocity vector would form a
90° angle with the radial direction vector. We allow small
computational deviations from this exact condition only up
to a given tolerance typically from 0.01° to 0.1°. This is
achieved with a modest number of terms in the Legendre
expansion, of the order of 100 (see also Ref. 12 for addi-
tional technical details).

We define the escape particle velocity as the initial veloc-
ity for which a particle, initially at a distance from the
straight vortex equal to the diameter, breaks free from the
vortex and moves to infinity. The results for the escape ve-
locity are summarized in Table I. It is evident that, for fixed
particle size, there is strong temperature dependence. Noting
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TABLE 1. Escape initial particle speed V, for three different
temperatures, 7=1.3, 1.95, and 2.171 K. We have considered two
particle diameters, 2a=2 X 10~* and 10~* cm, in order to investigate
the effects of particle size. In all cases, the initial vortex-particle
distance is equal to the particle diameter.

Temperature 7' Diameter 2a Escape velocity V,

(K) (cm) (cm/s)

1.3 1074 45

1.3 2% 1074 24
1.95 2% 1074 31
2.171 2% 1074 76

that at temperature 7=1.3 K a particle of diameter 2a=2
X 10™* cm escapes when it has initial velocity V,=24 cm/s,
and that a particle of diameter 2a=10"* cm escapes when it
has initial velocity V,=45 cm/s, it appears that the escape
velocity is approximately inversely proportional to the diam-
eter of the particle. Care is needed in interpreting this result.
One must take into account that the minimal escaping initial
kinetic energy of the smaller particle is approximately half of
the minimal escaping initial kinetic energy of the larger par-
ticle, that the damping time 7 for the larger particle is four
times larger than that of the smaller particle, and, finally, that
the latter starts its motion towards the vortex at a distance
half of the initial distance of the former. For the larger par-
ticle the “damping” distance is s,=V,7=1.908 X 10™* cm
which is approximately equal to the original distance (one
diameter) of the particle from the vortex. For the smaller
particle 5,=0.894 X 10~* ¢cm, which, again, is close to the
initial particle-vortex distance. Certainly, it must also be
taken into account that viscous damping is only one of the
forces acting on the particle, whereas the computed results
incorporate all the various physical ingredients of our model.
On the other hand, the increase of the escaping velocity with
temperature appears to be a direct consequence of the larger
damping effects at higher temperatures (the decrease of the
damping time 7 and the increase of the mutual friction pa-
rameters).

Figure 4 shows a sequence of particle-vortex configura-
tions depicting the collision of a particle of diameter 2a=2
X 107 cm with a vortex at T=1.3 K. The initial particle ve-
locity magnitude is V=25 cm/s. Figure 4(a) shows that the
vortex is deformed as it tries to avoid the incoming particle.
The collision excites Kelvin waves [Figs. 4(b) and 4(c)] that
propagate along the vortex as the latter moves towards the
“back” side of the particle [Fig. 4(c)]. Figure 4(d) depicts the
particle dragging the vortex, forcing its two parts to come
together, thus facilitating a particle-vortex detachment. Fol-
lowing the detachment, the vortex recoils [Fig. 4(e)], and the
subsequent relaxation creates more Kelvin waves along the
vortex [Fig. 4(f)]. It should be noted that for this particular
polarity (the vorticity vector points upwards) the vortex
forms a protruding bump “rightwards” with respect to an
observer moving with the particle. This is also the direction
of postcollisional particle deflection [Fig. 4(d)]. This could
be understood intuitively by observing that the collision site
of the particle represents a low pressure flow region due to
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(a) (d)

(b) (e)

//\M/\/

(c) ®

FIG. 4. (Color online) Particle-vortex collision for initial par-
ticle speed V=25 cm/s, at T=1.3 K. Time increases as follows: 7,
=0.6309X 107 s (a), #,=0.9464 X107 s (b), 7,=0.1577 X 10™* s
(c), 14=0.4416X107* s (d), 1,=0.5047 X 107* s (e), and #;=0.7887
X 107 s (f). The particle arrives from the right. The particle diam-
eter is 2a=2X10"* cm, and the initial particle-vortex distance is
2a. The particle attaches to the vortex, and, after stretching it,
breaks free.

the attached vortex segments. Since nothing analogous oc-
curs at the opposite side of the particle, a net, deflecting
pressure force aiming towards the collision site is expected.
Figure 5 (left) analyzes the contributions to the total force
acting on the particle. Notably, the boundary-induced force,
f,=3p,/ 5dS (V°+V?)*, is of minor importance and contrib-
utes significantly to the dynamics only at times close to the
collision time (i.e., ;=0.6309 X 107> s). In comparison, the
damping force, fg=6mau,(V'=VP), is the strongest during
the initial stages of evolution (indicating that the initial dis-
tance is so large that the boundary-induced force has no ef-
fect on the particle motion). Once the collision occurs, the
local force, f1:271'psa3 dV:(z,t)/ dt, becomes the dominant
one, due to the generation and propagation of Kelvin waves
along the vortex. It is expected that at higher temperature,
increased damping of Kelvin waves due to mutual friction
would diminish the importance of f; at higher temperatures.
After the particle breaks free from the vortex, its dynamics
are dominated by viscous damping. This observation, in con-
junction with the prescribed zero normal fluid velocity, ex-
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FIG. 5. Same particle-vortex collision as in Fig. 4. The top
graph shows relative contributions f; (i=d,l,b) to the magnitude of
the total force acting on the particle due to damping, f4, local, fj,
and boundary-induced force, f},. The contributions are normalized
by the magnitude of the total force, |f|. The boundary-induced force
(bottom, solid line) is of importance only during the initial collision
times (see the small spike at the bottom of the graph for ¢
~0.000 01 s). The damping force (dashed line) dominates both the
initial and final stages of evolution. The local force (dotted line) is
initially zero but builds up quickly. The bottom graph shows the
kinetic energy of the particle versus time.

plains (Fig. 5, right) the decrease of the particle velocity after
its detachment from the vortex. Note in Fig. 5 (right) the
change in the slope of particle’s Kkinetic energy E,
=O.5m,,V; at the onset of collision. The lack of smoothness is
due to the discrete nature of the model. Our previous
computations'®!'! showed that viscous damping forces the
particles to move with the normal fluid velocity in between
their collisions with the vortices. In that work, we argued that
the particle velocity could be a very good indicator of the
normal fluid velocity, provided that particles are not arrested
by the superfluid vortices. The present findings suggest that
an experiment (involving necessarily a dilute system of par-
ticles) could make use of this result by ensuring that the
normal fluid velocity (hence also the particles velocity) is
larger than the escape velocity reported here.

A second computation is carried out at 7=1.3 K with ini-
tial particle velocity V=20 cm/s. In this case, Fig. 6, the
particle is arrested by the vortex. The mechanism is as fol-
lows. The particle attaches to the vortex and turns as before
[Fig. 6(a)], but its kinetic energy is not sufficiently large to
stretch the vortex and “force” a detachment (as in Fig. 4).
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(a)

(b)
()

FIG. 6. (Color online) Particle-vortex collision for initial par-
ticle speed V=20 cm/s, at T=1.3 K. Time increases as follows: 7,
=0.4732X10*s (a), 1,=0.8833X10*s (b), and ,=0.5047
X107 s (c). The particle has arrived at the vortex from the right.
The particle diameter is 2a=2X 107 cm, and the initial particle-
vortex distance is 2a. After colliding with the vortex, the particle

slows down and stops, since it lacks the necessary kinetic energy to
stretch the vortex and induce a detachment.

Instead, the particle turns further, following a circular trajec-
tory [Fig. 6(b)]. In the meantime, the vortex also moves back
and forth along the surface of the sphere and develops long
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FIG. 7. Same particle-vortex collision as in Fig. 6. The top
graph shows contributions to the magnitude of the total force acting
on the particle due to damping, f4 (dotted, bottom line for large ?),
local, f; (dashed, top line), and boundary-induced force, f;, (solid
line). The contributions are normalized by the magnitude of the
total force. Unlike Fig. 5, all contributions are of comparable im-
portance, without any particular one dominating the others. The
bottom graph shows the evolution of the particle’s kinetic energy
versus time.

wavelength waves [Fig. 6(b)] that, in due time, are damped
[Fig. 6(c)]. In the final configuration, both vortex and particle
have zero velocities. Figure 7 (left) shows the contributions
to the forces on the particle. They look very different from
the case of initial velocity V=25 cm/s. The arrest of the
particle by the vortex leads to time dependent vortex con-
figurations that explain the dominating role of the local force
f,=2mp,a®dV*(z,t)/t (upper line in the graph). In opposi-
tion to the V=25 cm/s case, the boundary induced force f},
=%ps [sdS (V*+V?’)%fi makes significant contributions to the
dynamics, and, at later evolution times, is even more impor-
tant than the damping force fg=6mau,(V'-=V?). A mono-
tonically decreasing particle kinetic energy E, is depicted in
Fig. 7 (right). According to the graph, the particle halts at ¢
~8X10™s.

It is useful to compare the particle-vortex collision phe-
nomenology at 7=1.3 K with what happens at other tem-
peratures. Figure 8 shows the collision of a particle of diam-
eter 2a=2X 10™* cm and initial velocity V=200 cm/s with a
vortex (initially) placed at distance 2a away, when the tem-
perature is 7=2.171 K. Under these conditions, the vortex
and the particle eventually separate. One notices the pro-
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FIG. 8. (Color online) Particle-vortex collision for initial par-
ticle speed V=200 cm/s, at 7=2.171 K. Time increases as follows:
1,=0.9465 X 107 5 (a), £,=0.1230 X 10 s (b), 7,=0.1325X 1077 s
(c), 14=0.4069 X 107> s (d), 7,=0.4164 X 107 s (e), and #;=0.5678
X 1073 s (f). The particle arrives from the left. The particle diameter
is 2a=2X10"* cm, and the initial particle-vortex distance is 2a.
Note that the vortex attaches at the particle’s surface at four points
[as in (c)], forming a vortex “handle.” Note also the nontrivial
mechanism of vortex detachment from the surface; (d) the vortex
detaches from the particle; (e) the particle moves slow enough for
the vortex to attach to it again via a new instability-induced colli-
sion; and (f) after numerous collisions, the particle finally escapes
the vortex.

(@) (@)

(b) (e)

é
%
1

nounced deformation of the vortex, which forms a bump,
comparable to the size of the particle [Fig. 8(a)]. Due to the
combined action of the Biot-Savart law, and boundary and
mutual friction effects, the bump collapses [Fig. 8(b)] onto
the surface of the particle creating a characteristic arc [Fig.
8(c)]. Because of mutual friction, the arc shrinks continu-
ously until its two “legs” annihilate each other. The particle-
vortex detachment occurs in a special way: the particle
stretches the vortex and two almost parallel vortex segments
are formed behind the particle. Due to continuous stretching,
these two segments approach each other until they reconnect,
and the particle detaches from the vortex [Fig. 8(d)]. How-
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FIG. 9. Same particle-vortex collision as in Fig. 8. The top
graph shows contributions to the magnitude of the total force acting
on the particle due to damping, f4, local, f;, and boundary-induced
force, f},. The contributions are normalized by the magnitude of the
total force. The boundary-induced force is always negligible com-
pared to the other two forces, and is not even discernible in the
graph. The damping force dominates at all times. The bottom graph
shows the evolution of the particle kinetic energy versus time.

ever, because of small particle-vortex separation velocity, the
vortex remains sufficiently close to the particle so that a sub-
sequent collision reattaches the vortex to the particle [Fig.
8(e)]. This phenomenon occurs numerous times until [Fig.
8(f)], eventually, the particle breaks free. Notice that
throughout the system’s evolution, the vortex contour re-
mains very smooth due to strong mutual friction damping of
any excited Kelvin waves.

A natural question arises: Is it possible, that for suffi-
ciently high approaching velocities, the boundary-induced
deformation of the vortex is so large that the particle alto-
gether “misses” the vortex? In order to clarify this matter, we
have gradually increased the initial particle velocity, achiev-
ing a (purely hypothetical) particle speed of V=600 m/s. We
have found that (in all cases) the particle-vortex collision
pattern is very similar to that in Fig. 8, i.e., the particle al-
ways collides with the vortex. This appears to be so, because
the “collapse” of the aforementioned bump onto the particle
surface happens at time scales smaller than the time neces-
sary for the particle to escape the neighborhood of the vor-
tex.

Figure 9 (left) shows the contributions to the particle’s
total force. Due to the high velocities involved, the damping
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FIG. 10. Particle-vortex collision at 7=2.171 K. The initial par-
ticle speed is V=200 cm/s, its diameter is 2a=2 X 10~ c¢m, and the
initial particle-vortex distance is 2a. The top graph shows that,
throughout the evolution, the angle between the total superfluid
velocity and the normal radial vector to the surface remains
bounded below 0.1°. The bottom graph shows the order of the Leg-
endre functions that is needed at each time step in order to maintain
this accuracy.

force, fg=6mau,(V"-VP), is dominant throughout the evo-
lution. This is reflected by the particle kinetic energy E),
evolution shown in Fig. 9 (right) that shows no noticeable
effect arising from the attaching-detaching processes. The
only other force of some importance is the local force, f;
=2mp,a*dV*(z,t)/ it, that becomes significant only after col-
lision events. In particular, Fig. 9 (left) shows that the impor-
tance of f; (lower line in the graph) attains a peak at the onset
of the first attaching collision before it starts decaying as the
particle stretches the vortex. The decay continues until the
system’s evolution arrives at the aforementioned regime of
multiple attaching-detaching processes, which correspond to
the revival of the importance of the f; force at later times.
Overall, as anticipated in the discussion of the 7=1.3 K re-
sults, the strong mutual friction damping for 7=2.171 K di-
minishes the (relative) strength of f;. The collision shown in
Fig. 8 is the most difficult to calculate. Hence it is very
appropriate for discussing the accuracy and efficiency of our
method. We define the computational error as the angle away
from 90° between the superfluid velocity and the normal
radial vector to the surface integrated over the sphere. As
shown in Fig. 10(left), the computation is very accurate,
since throughout the evolution the absolute error never ex-
ceeds one-tenth of a degree. We have verified that the error
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could be made arbitrarily small (subject to round-off error
limits) by increasing the number of Legendre functions. Also
shown in Fig. 10(right) is the order of Legendre functions
that need to be taken into account (at each time step) in order
to achieve the desired accuracy during the evolution. At most
100 functions are needed. Note that the required Legendre
function order decreases, until, around r=4 X 107° s, it sud-
denly increases again. This increase corresponds to the recur-
ring detachment-attachment processes described above [Figs.
8(d) and 8(e)]. It is notable that, although the vortex connects
twice with the particle upon collision developing a “handle”-
like structure, even this case does not require many Legendre
functions. The sharp decrease of the number of the required
Legendre functions around t=6X 107 s corresponds to the
final particle-vortex detachment.

Figure 11 depicts the effect of strong mutual friction
damping on the dynamics of an arresting particle-vortex col-
lision for 7=2.171 K. It is observed that, despite the colli-
sion, there is no evidence of Kelvin waves on the vortex. The
vortex (left graph) is almost straight, and its two parts are
never stretched strongly enough to meet and reconnect again.
Instead, the vortex moves towards the poles of the particle,
and straightens up (right graph). This effect is accompanied
by the loss of all particle kinetic energy. Hence the system
reaches a configuration in which the particle and the vortex
are at rest, although the fluid is moving according to a per-
turbed potential vortex velocity field.

Figure 12 shows a remarkable case of particle-vortex col-
lision, when 7=1.95 K, 2a=2 X 10~* ¢cm, V=31 cm/s, and
initial particle-vortex distance is equal to 2a. Although the
particle escapes the vortex, it comes to a halt a few diameters
away from it. We have continued the calculation until ¢,
=0.551X10"" s which is two orders of magnitude larger
than the approximate halting time (£,=0.6309X 107 s in
Fig. 12) and corresponds to approximately 22X 10° time
steps. We verified that the particle did not fall into the vortex,
remaining static even after times large compared with the
duration of the collision. This phenomenon can be explained
by observing the balance of the forces contributing to the
motion of the particle in Eq. (7). Figure 13(left) shows that
although the local force f,=2mp,a*dV*(z,1)/dt is important
as long as the particle remains attached to the vortex, it even-
tually falls off to zero following particle-vortex detachment.
On the other hand, the damping force fy=6mau,(V"'—VP)
remains of importance throughout the evolution of the sys-
tem, and is responsible for halting the particle by (eventu-
ally) counterbalancing the boundary-induced force f}
=3p,J5dS (V°+V?)%. The latter force is not as significant as
the other two forces during the collision phase, but becomes
important, after particle-vortex detachment, when the Kelvin
waves are damped and the vortex starts straightening up. The
kinetic energy of the particle E,, decreases monotonically to
zero. Notice the discontinuity in the slope that corresponds to
the attaching collision. Overall, it appears that, in cases
where the particle halts at sufficient distance from the vortex,
the boundary-induced force could be so small that an appro-
priately small damping time 7 could create an exactly can-
celing damping force even for negligible particle velocities.
In this way, the particle moves so slowly that its motion is
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(a)

(b)

FIG. 11. (Color online) Particle-vortex collision for initial par-
ticle speed V=75 cm/s at T=2.171 K. Time increases as follows:
£,=0.1515X 1073 s (a) and £,=0.3405X 1073 s (b). The particle has
arrived from the left. The particle diameter is 2a=2 X 107 cm, and
the initial particle-vortex distance is 2a. The particle is brought to a
halt after its collision with the vortex. As seen on the top graph, the
two arresting vortex segments initially straighten up before migrat-
ing towards the poles of the particle, where (bottom graph) they
align with the vertical diameter acquiring a static configuration.

undetected even after large compared to the duration of the
collision times. To confirm this, we have performed a second
calculation in which the Stokes force was removed from the
particle equation of motion after the approximate halting
time #,. It was then observed that the boundary-induced force
pulls the particle towards the vortex. This intriguing phe-
nomenon (the particle halting away from the vortex) was
also observed in a separate calculation with the same tem-
perature and particle size but initial velocity V=35 cm/s.
Remark 4. By comparing the solutions presented in this
work with realistic laboratory and natural flow situations,
some modeling approximations become apparent. The most
obvious has to do with the size of the computational domain.
In actual flows, the length of the superfluid vortices is many
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FIG. 12. (Color online) Particle-vortex collision for initial par-
ticle speed V=31 cm/s, at 7=1.95 K. Time increases as follows:
1,=0.2208 X 10~ s (a), £,=0.5678 X 107 s (b), 7,=0.6940 X 107* s
(c), and 14=0.6309 X 1073 s (d). The particle has arrived from the
right. The particle diameter is 2a=2X 107 cm, and the initial
particle-vortex distance is 2a. The particle escapes the vortex but it
halts a few particle diameters away from it. It remains static as the
vortex relaxes towards a straight line configuration.

orders of magnitude larger than the size of the particles (in-
stead of a single order of magnitude as it is here). This limi-
tation is more important for low temperatures. In a long
straight vortex, the collision induced Kelvin waves propagate
away from the collision region, and their continuous excita-
tion is as important a damping mechanism of particle motion
as is the viscous damping. In the smaller model system em-
ployed here, the Kelvin waves, due to the particular bound-
ary conditions, interfere at the respective ends of the compu-
tational vortex domain, and then reenter the latter, before
colliding with the particle depositing some of their energy on
it. At higher temperatures this phenomenon becomes less im-
portant due to mutual friction-induced Kelvin wave damp-
ing. Thus higher temperature results are more reliable for use
in interpreting experiments, while the low temperature re-
sults might underestimate the required initial escape velocity.
Other difficulties have to do with the lack of a self-consistent
account of the interaction between the normal fluid and the
particle, as well as between the normal-fluid and the super-
fluid. Finally, the straight vortex configuration which we con-
sidered is idealized compared to the complex turbulent coun-
terflow situations that are experimentally studied. Certainly,
these issues need to be addressed in the future. Their full
resolution requires nontrivial mathematical developments in
this topic.

V. CONCLUSIONS

We have presented a numerical, computational, and physi-
cal analysis of particle-vortex collisions in thermal superflu-
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FIG. 13. Particle-vortex collision for initial particle speed V
=31 cm/s, at T=1.95 K. The particle diameter is 2a=2 X 10™* cm,
and the initial particle-vortex distance is 2a. The top graph shows
contributions to the magnitude of the total force acting on the par-
ticle due to damping, f4, local, f}, and boundary-induced, f},, forces.
The contributions are normalized by the magnitude of the total
force. The damping force (dotted line) dominates at early times, and
is eventually balanced by the boundary-induced force (dashed line).
The local force (solid line) is important during collision only, and
falls off to zero as the particle halts (Fig. 12). The bottom graph
shows the evolution of the particle’s kinetic energy.

ids. Using our method, we have shown that there is a critical
incoming particle velocity above which the particle and the
vortex separate after their collision. This critical velocity is
proportional to the fluid temperature and inversely propor-
tional to the particle size. In connection with the findings of
Ref. 10, these results corroborate the possibility of direct
measurement of normal fluid velocity in thermal superfluids
via appropriately designed particle image velocimetry (PIV)
experiments. In particular, the authors of Ref. 10 have shown
that, when a particle moves in between a dilute vortex link,
the Stokes drag causes it to move with the normal fluid ve-
locity. However, it was not clear what happens when a par-
ticle collides with a vortex. If the particle is trapped by the
vortex, a PIV measurement of the normal fluid velocity
would become invalid at the onset of collision. However, the
present results indicate that the particle can escape the vortex
(see Table I), and once free, it will (as shown in Ref. 10) be
forced by the Stokes drag to move once again with the nor-
mal fluid velocity. In this way, a hypothetical PIV measure-
ment of the particle velocity would record the normal fluid
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velocity most of the time with the exception of small time
periods centered around particle-vortex collision events. The
duration of the latter events could be made as small as de-
sired by diluting the vortex system and/or by increasing the
particle velocity. According to the above, particle insertion
into very dense counterflow vortex tangles is not the best
approach to measure the normal fluid velocity. This is be-
cause, as it was shown by counterflow measurements,?’-?8 the
particles do not move with the normal flow velocity in such

PHYSICAL REVIEW B 77, 014527 (2008)

flows. According to the present findings, experiments with
dilute vortex systems could be more successful in this re-
spect.
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